Copyright Reports & Markets. All rights reserved.

Artificial Intelligence (AI) in Retail Banking - Thematic Research

Buy now

1 PLAYERS

    2 TECHNOLOGY BRIEFING

      Definitions

        History of machine learning

          How does deep learning work?

            3 TRENDS

              Technology trends

                Macro-economic trends

                  Applications of AI in Retail Banking

                    4 VALUE CHAIN

                      Ten categories of AI software

                        5 INDUSTRY ANALYSIS

                          The tech sector’s angle

                            The Webscale companies

                              Enterprise software players

                                Proprietary datasets are also important

                                  AI and ML are transforming the chipset market

                                    The two critical components of any successful AI engine

                                      6 WHAT AI MEANS FOR RETAIL BANKS

                                        Recommendations for retail banks

                                          How AI vendors can sell into the retail banking sector

                                            Recommendations for IT vendors

                                              Timeline

                                                Market size and growth forecasts

                                                  7 COMPANIES SECTION

                                                    Listed tech companies

                                                      Privately held tech companies

                                                        Retail banking companies

                                                          8 APPENDIX: OUR “THEMATIC” RESEARCH METHODOLOGY

                                                          For six decades machine learning (ML) was poised to take off because members of the ‘artificial intelligentsia’ had already come up with the theoretical models that could make it work. The problem was that they were waiting for rich data sets and affordable ‘accelerated computing’ technology to ignite it.

                                                          These are now becoming more available, and amid a swirl of hype, ML - i.e., software that becomes smarter as it trains itself on large amounts of data - has gone mainstream, and within five years its deployment will be essential to the survival of companies of all shapes and sizes across all sectors.

                                                          For many investors, ML=AI; ML is an AI technology that allows machines to learn by using algorithms to interpret data from connected ‘things’ to predict outcomes and learn from successes and failures.

                                                          There are many other AI technologies - from image recognition to natural language processing (NLP), gesture control, context awareness, and predictive APIs - but ML is where most of the investment community’s funding has flowed in recent years. It is also the technology most likely to allow machines to ultimately surpass the intelligence levels of humans.

                                                          Many companies, like Alphabet, have already become ‘AI-first’ companies, with machine learning at their core. At the same time, many ML techniques are getting commoditized by being open sourced and pre-packaged into developer toolkits that anyone can use.

                                                          Scope

                                                          This report is part of our ecosystem of thematic investment research reports, supported by our “thematic engine”. About our Thematic Research Ecosystem:
                                                          The author has developed a unique thematic methodology for valuing technology, media and telecom companies based on their relative strength in the big investment themes that are impacting their industry. Whilst most investment research is underpinned by backwards looking company valuation models, the author’s thematic methodology identifies which companies are best placed to succeed in a future filled with multiple disruptive threats. To do this, the author tracks the performance of the top 600 technology, media and telecom stocks against the 50 most important themes driving their earnings, generating 30,000 thematic scores. The algorithms in the author’s “thematic engine” help to clearly identify the winners and losers within the TMT sector. Our 600 TMT stocks are categorised into 18 sectors. Each sector scorecard has a thematic screen, a risk screen and a valuation screen. Our thematic research ecosystem has a three-tiered reporting structure: single theme, multi-theme and sector scorecard. This report is a Multi-Theme report, covering all stocks, all sectors and all themes, giving readers a strong sense of how everything fits together and how conflicting themes might interact with one another.
                                                          Reasons to buy
                                                          Our thematic investment research product, supported by our thematic engine, is aimed at senior (C-Suite) executives in the corporate world as well as institutional investors.
                                                          Corporations: Helps CEOs in all industries understand the disruptive threats to their competitive landscape
                                                          Investors: Helps fund managers focus their time on the most interesting investment opportunities in global TMT.
                                                          Our unique differentiator, compared to all our rival thematic research houses, is that our thematic engine has a proven track record of predicting winners and losers.

                                                          Buy now